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Magnetic and gravitational moments of higher spin 
particles 

B Spence 
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Canberra, ACT 2600, Australia+ 

Received 6 April 1982, in final form 22 October 1982 

Abstract. Consistent equations for spin-S particles in an electromagnetic field discovered 
recently by Buchdahl are shown in a non-relativistic approximation to describe particles 
with a gyromagnetic ratio equal to the reciprocal of the spin. The corresponding equations 
for a particle in a Riemann space are derived and the field-intrinsic spin interaction 
discussed. It is shown how the equations may be modified, without altering their con- 
sistency, to give the particles arbitrary gyromagnetic and 'gyrogravitational' ratios. Finally, 
in the gravitational case, it is shown that the equations have the most simple behaviour 
under conformal transformations when the ratio is the reciprocal of the spin. However, 
conformal invariance only obtains for spin-zero particles and for massless spin-; and spin-1 
particles, in which cases one has the usual equations. 

1. Introduction 

The metric has signature -2. The Infeld-van der Waerden symbols and the metric 
spinor satisfy 

(1.1) 

(1.2) 

(1.3) 

kA'B 1 k f  
(T ( T A ' B = g  

kA'C B ' D  A'B'  C D  
(T (Tk = &  & 

A B  A 
& & B C = - S  c. 

This notation is used for typographical convenience. An important tensor-spinor is 
defined by 

(1.4) 
Formulae useful for the manipulation of these spinors and tensor-spinors are given 
by Buchdahl (1962). Note that symmetrising and antisymmetrising brackets act upon 
only one type of index, for example upon k and 1 in (1.4). (As it is not apparently 
in common use, I might remark that the use of the S tensor-spinor facilitates 
tensor-spinor transcriptions. For instance, the spinor curvature quantities can be 
directly written as 

[ k C ' A  11 
S k ' A B  := (T U C ' B .  
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EA'B'cD := iSklA'B'SmnC&klmn 

(1.6) 
in a Riemann space.) The consistent equations of Buchdahl (1982) for a s p i n 4  
particle in a Riemann space, with 6 and 77 symmetric in their unprimed indices and 
n := 2S, are 

(1.7) 

(1.8) 

1 kC'A LD'B 
=TU (+ E k l  

VB'A16AlA, . . .A ,  - - K77 B'Az. . .A" 

v B , A I T B ' A  ,...An - K6A, . . .An - eA,(A2SklBCSA,...A")BC +- ,k l -  - 
U K  

K := mclhJ2 and V A t B  is defined by 
kA'B :=U ( ) ; k .  (1.9) 

Equation (1.8) gives a subsidiary condition by the symmetry of 6 in A I  and A2: 

(1.10) 

The consistency of (1.7) and (1.8) is shown by substituting for 77 in (1.10) from 
(1.7)--one obtains an identity. Replacing all covariant derivatives by electromagnetic 
derivatives ak - (ie/hc)Ak in (1.7) and (1.8) gives one consistent flat-space equations 
for a particle in an electromagnetic field. 

Eliminating 77 from equations (1.7) and (1.8), using the decomposition of the 
Riemann tensor and the definition of the 'Weyl spinor' 

A, ... AnBC 1 
; k l *  VB'A277 B ' A 2 . 4  - - - Sk'B& 

K 

CABCD := as kfABSmnCDCklmn (1.11) 

one obtains (Buchdahl 1982, equation (6.2)) 

(1.12) ) 
mZc2 1 +2)R [ A 1 4  = -2(n - 1)CBC(AIAZ[A3...A")BC 

12 

where, in this case, 

a:=gkf( ) ; k , .  

The corresponding equation in the electromagnetic case is 

(1.13) 

where, in this case, 

(For n = 0 the terms on the right-hand sides of equations (1.12) and (1.13) are absent.) 
These two equations are, of course, not parity invariant. 

2. The electromagnetic case 

Treating 6 as the symmetrised product of n spin-; 2-spinors one may define, using 
Clebsch-Gordan coefficients, an ( n  + 1)-component vector P from the components 
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of 6. (For example, for a spin of one define (9'' V2, 'PIr3):=[['', (1/d2)(['2+521), 
522].) Now, one has the matrix relations 

(2.1) 

with a ,  b, c = 1, 2, 3 and the ua the usual Pauli matrices (a' = (?A), etc). Then (1.13) 
can be written 

s a 4  = t a a  sab =I. 21E cab (T, 

with S = (SI, Sz, S 3 )  the spin-S angular momentum matrices. For 'weak' fields, and 
in a non-relativistic limit, put 

(2.3) 

where @ varies slowly in time (i.e., consider states 'close' to the free particle, positive 
energy eigenstates-the 'single particle' states). The field is weak in the sense that it 
is assumed that the probability of particle-antiparticle 'fluctuations' due to the field 
is negligible, and hence it can be assumed that one is dealing with a so-called 
non-relativistic single particle. E /c  << B is also taken to be the case. Then, with A4 = 0 
for simplicity, 

9 = exp[ - (i/h)mc2t]@ 

m2c4  2imc2 a@ i -lpz a' ( -- h2 a-- -) expj  -hmc2t) 
at2 h at 

and so in this limit (2.2) becomes 

(2.4) 

which is the non-relativistic Schrodinger equation for a particle of charge -e in a 
magnetic field, with gyromagnetic ratio 1/S (in Bohr magnetons). I remark that the 
values 1/S were conjectured by Belinfante (1953) and have been the subject of 
investigations since (e.g. Hagen and Hurley 1970). 

3. The gravitational case 

Consider a point in space-time, and an inertial reference frame at that point. Then 
it is well known that the conformal tensor in such a frame can be written 

with B, E symmetric, traceless, real 3 x 3 matrices. (The indices 1-6 have replaced 
the pairs 23, 31, 12, 14,24 and 34 respectively.) The coordinates have the dimension 
of time, whilst gkl is dimensionless. Cklmn has the dimensions (time)-*. Proceeding as 
in the electromagnetic case, one finds that (1.12) may be written 

(3.2) 
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Using the approximation (2.3) one then obtains the appropriate non-relativistic 
Schrodinger equation (with reference to the local inertial frame) 

- h2 n +2 1 a@ 
2m 24m 4mS at ( -v2 + - h2R)@ - -Babsasb@ = ih - (3.3) 

iassumingEab/c << Bab). Define p := (2mS)-'. Then one may consider the Hamiltonian 

(3.4) 

Then [H, S 2 ]  = 0, and 

(3.5) 
d 
dt 
-(Sc) = - / L E ~ ~ ( ~ B ; ) ( S ~ ~ ) .  

The simplest classical equation corresponding to this is 

s = -  p (BS)  x S. 

This equation is formally similar to that describing the torque-free motion of a rigid 
body about its centre of mass (Goldstein 1980) 

L = - ( I - ' L ) x L  (3.7) 

with L the angular momentum of the body, and I its moment of inertia tensor (assumed 
invertible). That p B  and I-'  should be analogous is perhaps not surprising--lab 
measures the resistance of a body to being turned (loosely speaking) and m-' times 
the field (together with a 'nonclassical' factor (2S)-') is then the 'inverse' of this. I 
remark that (3.6) has a simple solution for a type ID Weyl tensor, when the canonical 
form of B is diag(a, a, -2a) where a is a real number at each point in space-time. 
In this case (3.6) describes simple precession of the spin about the third spatial axis. 
The relationship between this discussion and the classical theory of a particle with 
spin in a gravitational field remains to be investigated. 

4. Arbitrary ratios 

Now observe that the consistency of (1.7) and (1.8) is unaltered by the addition of 
an arbitrary symmetric spinor of valence n to the right-hand side of (1.8). In particular, 
the addition of the term 

where A may depend on S,  leads to the following equation instead of (1.12) (n  >O): 

Similarly, in the electromagnetic case, one obtains instead of (1.13) the equation 

(4.3) 
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Proceeding as before one finds A to be the gyromagnetic ratio of the particle. One 
may then call the A in (4.2) the 'gyrogravitational ratio'. 

5. Conformal invariance 

One finds that the transformation of equation (4.2) under a conformal transformation 
of the metric is most simple when A = 1/S. Unfortunately, however, even then the 
equation is not conformally invariant in general. By 'conformally invariant' I mean 
that the equation goes into another of the same form under the transformation 

4 

5 + 5' = exp(-vq)5' 

where q is an arbitrary (real) function and v a real number (the 'conformal weight' 
of 5). The transformed spin connection is given by (Buchdahl 1959) 

(5.2) 
The choice v = -1 is convenient. The mass is given the conformal weight -1 .  One 
finds that 

A C'A ; I  
pABk = r Bk -(TkC'BgI q . 

ff =eXp(-3q)[R +6(q ,kk  + q ; k q i k ) ] .  (5.3) 
After some calculation, one then finds that the conformal transform of (4.2) is (in 
natural units) 
[U+ &n (n +2)AR + m 2  +4(n + 2 ) ( h  - l ) ( q : k k  + q ; k q ' k ) ] 5 ' A ' " ' A n  

- 2n [ V B " A , q ] V B , ~ A z . . . A " ) c  

(5.4) = -n (n  - l)hCBC(A,AZ5'A,"'An)BC 

ABCD Note that C 

[U + m 2  + h ( n  + 2 ) ~ ] 5 ' ~ 1 . . . ~ -  

is a conformal invariant. Thus choose A = 2 / n  = 1 /S ,  giving 

( 5 . 5 )  

(5.6) 
Thus the mass must be taken to be zero. (Equation (5.6) then implies A = 1 / S  in (4.2) 
with m =O.) However, as is well known, for spin 2; equation (5.6) leads to the 
subsidiary condition 

(5.7) 

which must be satisfied by the field, and the equatiotl is then unsuitable for describing 
the particle. Thus, equation (4.2) is conformally invariant only for m = 0, A = 1 / S  
and only for spins 5 and 1 .  In these two cases one has the second-order wave equations 

- -qn - l )CBC'A  A A,...A")BC + zn  [VB'(A,q]vB,C5'AZ. . .A,)C ' 25' 

VBtC5'AZ.. A.lC - - 0. 

- 

The function q is arbitrary, and thus (4.2) is conformally invariant only if A = 1 / S  and 

s klBCSA3,..AnBC. 
;kl  = 0 

(0+3)QA = 0 

(0 + fR)QAB = - 2CCDAB@CD. 
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For spin zero one has, of course, 

( U + m 2 + & ) O = 0  (5 .9)  

and the corresponding equation for a massless particle (equation (5.9) with m = 0). 
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